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The linear stability problem for surface mechanisms with free sites and two adsorbed
species is investigated under the assumptions of mass action (Langmuir) surface kinetics, fast
mass transport to and from the surface, and a conservation condition. The results also apply to
enzyme kinetics for systems with a single enzyme occurring in the free form and two combined
forms, and with fast mass transport of the substrates and products. Mechanisms are classified
according to their stability and the presence or absence of complex eigenvalues, and specific
reactions with numerical values of the rate constants and surface concentrations are given to
illustrate the results. Some mechanisms, e.g., proportionate reactions, are shown to be stable
for all values of the rate constants and stoichiometric coefficients. The two most common
types of mechanisms, namely sequential mechanisms and the simple Langmuir–Hinshelwood
mechanism (one adsorbate per site), are always stable. The possibility of complex eigenvalues
arises for sequential mechanisms (providing a counterexample to a condition for real eigenval-
ues given previously in the literature). More general Langmuir–Hinshelwood mechanisms can
be unstable (e.g., those in which one adsorbate occupies two sites). Some results are general-
ized to mechanisms with three or more adsorbed species, and global stability is investigated
using monotone dynamical systems theory.
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1. Introduction

Here we treat the linear stability problem for mass-action kinetic mechanisms with
three species and a single conservation condition, with the conserved moiety (atom or
group of atoms) present in each of the three species. In the context of surface reactions,
it is the atoms of the surface itself that are conserved, and the three species are two
types of molecules adsorbed on the surface and the unoccupied surface sites (free sites).
Mass-action kinetics for surface reactions is the same as Langmuir kinetics, provided
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the surface sites are treated as a separate species. Our treatment is also relevant for
enzyme systems with a single enzyme (the conserved moiety) in three forms, one of
which is the free enzyme. In both the surface and enzyme cases, mass transport in the
ambient phase is considered to be fast, so that the concentrations in the ambient phase
may be taken as constant. We have previously given a comprehensive analysis of the
case of a single adsorbed species [1]. Here we show that of the two most common types
of mechanisms, sequential mechanisms are always stable, but Langmuir–Hinshelwood
mechanisms can show unstable behavior. We categorize the possible mechanisms in
terms of their stability and whether the eigenvalues may be real or complex. We also
provide a counterexample to a condition for real eigenvalues given in the literature.

There is an extensive literature on the stability of mass-action mechanisms, with
work to 1980 summarized by Clarke [2], and later work mainly by Feinberg, e.g., review
articles [3] and [4]. Feinberg’s work follows on from the work of Horn and Jackson [5]
by classifying mechanisms on the basis of the number of complexes, i.e., “sides” of reac-
tions. However, from an experimental point of view, the number of adsorbed species is
more likely to be known than the number of complexes, e.g., some form of spectroscopy
may indicate CO(ads) and O(ads). Indeed, three species can be combined to give an
infinite number of complexes, e.g., 2CO(ads), CO(ads) + O(ads), CO(ads) + 2O(ads),
2O(ads), etc. Our approach in classifying in terms of number of species will be closer in
spirit to that of Beretta et al. [6,7]. As explained below, the presence of one conservation
condition covers almost all heterogeneous catalytic mechanisms, and many important
cases have two or fewer adsorbed species.

The stability problem proves to be a subproblem in electrochemical impedance
spectroscopy (EIS) used to measure rate parameters for electrochemical surface mech-
anisms. Our larger interest in the impedance problem requires us not only to know
when the mechanism is stable (eigenvalues have negative real parts), but also when the
eigenvalues are real. Complex eigenvalues lead to an equivalent circuit containing an
inductor [1]. We first define some of the concepts and give some example mechanisms
from surface chemistry, indicating that some quite important mechanisms are not easily
handled by the existing theories. Then we summarize our assumptions and proceed to
classify mechanisms and predict their stability.

We always assume mass-action kinetics, i.e., reactions between s species in r ele-
mentary reactions with the net rates vj defined by

vj = kj
∏

reactants i

c
−nij
i − k−j

∏
products i

c
nij
i , j = 1, . . . , r, (1)

where ci , i = 1, . . . , s, is the concentration of the ith species, kj and k−j are the for-
ward and backward rate constants and nij are the stoichiometric coefficients, i.e., the
numbers of molecules of type i appearing in reaction j . These are positive for products
and negative for reactants; we assume that no species appears as both a reactant and
product in the same reaction step. The stoichiometic coefficients are the entries of an
s × r stoichiometric matrix N . In this formulation, each reaction has one column in N ,
whether it is reversible or not, and the rate vj is the net rate in the forwards direction, i.e.,
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vj = vj f − vjb where vj f and vjb are the forward and backward rates, respectively. The
number of independent reactions is rank(N). We will use the derivatives ∂vj/∂ci , which
have one of the following forms, depending on whether or not ci is the concentration of
a reactant or a product, respectively:

∂vj

∂ci
= −nij vj f

ci
for reactant i; ∂vj

∂ci
= −nij vjb

ci
for product i. (2)

The time evolution of the concentrations is governed by the set of s differential equa-
tions:

dc

dt
= r(c) = Nv(c), (3)

where ci and vj have been collected into vectors c and v, and r = [r1, . . . , rs]T is the
vector of the rates of production of the species. At a steady state, the net rates v must
satisfy Nv = 0. A steady state of the system is stable (strictly “locally asymptotically
stable”) if the matrix T of partial derivatives with i, k entry equal to ∂ri/∂ck has all
eigenvalues with negative real parts (a zero eigenvalue is allowed for each conservation
condition; see below). A mechanism is stable if all steady states are stable (for all
possible sets of rate constants). Since these partial derivatives are typically negative, we
avoid excessive use of negative signs in the following by considering the eigenvalues of
the s × s matrix Q = −T , where

Q =




−∂r1
∂c1

−∂r1
∂c2

. . . −∂r1
∂cs

−∂r2
∂c1

−∂r2
∂c2

. . . −∂r2
∂cs

...
...

. . .
...

− ∂rs
∂c1

− ∂rs
∂c2

. . . −∂rs
∂cs



= NG = N




−∂v1

∂c1
−∂v1

∂c2
. . . −∂v1

∂cs

−∂v2

∂c1
−∂v2

∂c2
. . . −∂v2

∂cs
...

...
. . .

...

−∂vr
∂c1

−∂vr
∂c2

. . . −∂vr
∂cs



(4)

with the partial derivatives evaluated at the steady-state concentrations.
We assume throughout that there is at least one conservation condition involving all

species, thus there exists at least one positive left null vector f forN such that f TN = 0.
The concentrations may be normalized so that f Tc = 1; for the surface chemistry case
this corresponds to defining concentrations as coverages, i.e., ratios of the number of
adsorbed species to the number of atoms on the clean surface. We adopt the conventions
that the free sites are the last species, and that they have formula M, i.e., one atom of the
clean surface. (M is mnemonic for metal.) Therefore the last entry of f is one and we
write f = [hT, 1]T.
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As an example, we use a simple sequential mechanism (SQ) with three species to
illustrate these ideas:

M
k1

�
k−1

MA,

MA
k2

�
k−2

MB,

MB
k3

�
k−3

M.

(5)

Here M is an uncovered active site on the surface. In reaction step 1, a species moves to
the surface rapidly and part or all of it adsorbs as MA, e.g., CO(g) adsorbs to give MCO.
The concentration of the species in the solution or gas phase is assumed to be effectively
constant, so that its concentration may be subsumed into k1, i.e., it is an external species,
and is not counted among the s species. Step 2 converts this surface species to a different
one, possibly losing or gaining some atoms via unwritten external species. In the third
step MB desorbs from the surface to give an external product species and releases a
surface site. Treating M explicitly as a species allows us to formally equate Langmuir
kinetics with mass-action kinetics [1]. Feinberg has likewise applied mass-action results
to heterogenous catalysis systems [8].

The stoichiometric matrix for (5) is

N =



1 2 3
1 −1 0
0 1 −1
−1 0 1


MA

MB
M

(6)

and the conservation of M atoms is associated with the vector f = [1, 1, 1]T, where the
entries are the numbers of M atom in each of the species MA, MB and M. Rank(N) = 2
here, since the third reaction may be written as the reverse of the second reaction plus
the reverse of the first reaction.

2. Theory

We first give some discussion of the general mechanisms considered and the eigen-
values of Q. Later, we specialize the discussion to three species and to specific types of
mechanisms. All mechanisms considered satisfy the following assumptions.

(A1) Each of the internal species appears somewhere in the mechanism. The last
species is taken to be the free sites.

(A2) Mass-action or Langmuir kinetics applies, i.e., the exponents in the rate laws
are the absolute values of the corresponding stoichiometric coefficients.

(A3) All species have positive concentrations at any steady state.
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(A4) All reactions are reversible, i.e., have non-zero forward and backward rates.

(A5) No species appears on both the reactant and product sides of any reaction, i.e.,
autocatalytic and autoinhibitory reactions are excluded.

(A6) There is at least one conservation condition, i.e., N has at least one positive
left null vector f .

Following Beretta and co-workers [6,7], we define an “elementary matrix” Aj for each
step j as the product njgT

j , i.e., the product of the j th column of N by the j th row ofG:

Aj = njgT
j =



n1j

n2j

...

nsj



[
−∂vj
∂c1

−∂vj
∂c2

. . . −∂vj
∂cs

]

=



n1j

n2j

...

nsj



[
n1jvj fb

c1

n2jvj fb

c2
. . .

nsjvj fb

cs

]
. (7)

The last form is obtained using equation (2); vj fb means vj f if nij is negative and vjb if
nij is positive. For example, the elementary matrix for the first step of the SQ mechanism
(equation (5)) is:

A1 =

 1

0
−1


[v1b

c1
0 − v1f

c3

]
=



v1b

c1
0 −v1f

c3

0 0 0

−v1b

c1
0

v1f

c3


 . (8)

Since nj and gj have the same sign pattern, each elementary matrix is symmetrical in
signs. The i, i (diagonal) entries are positive when species i is involved in the reaction
and zero otherwise. Therefore the elementary matrices are rank one matrices with a
positive trace, a single positive eigenvalue and s − 1 zero eigenvalues.

We now give statements about the eigenvalues of Q that apply to all mechanisms
that satisfy (A1)–(A5). Since Q = NG, the elementary matrices sum to Q:

Q = NG =
r∑
j=1

njg
T
j =

r∑
j=1

Aj . (9)

Each species i must appear in some reaction and so the i, i entry of some elementary
matrix must be positive, leading to a positive i, i entry for Q, i.e., Q must have all
diagonal entries positive. Therefore trace(Q) > 0 and at least one eigenvalue must have
positive real part.
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It is evident from Q = NG that f = [hT, 1]T, the left null vector for N , is also a
left null vector for Q and therefore Q is singular, with one (or more) zero eigenvalues.
We may factor out the zero eigenvalue associated with f as follows. First we partition
Q to separate out its last row and column:

Q =
[
B y
xT z

]
. (10)

Here B is an (s− 1)× (s− 1) submatrix, x and y are vectors and z is a scalar. Applying
[hT, 1]TQ = 0 to the partitioned Q gives xT = −hTB, z = −hTy, thus

Q =
[

B y

−hTB −hTy

]
. (11)

We apply a similarity using the nonsingular matrix R =
[
I 0
hT 1

]
:

RQR−1=
[
I 0

hT 1

][
B y

−hTB −hTy

][
I 0

−hT 1

]

=
[
B − yhT y

0T 0

]
=
[
Q̃ y

0T 0

]
, (12)

where

Q̃ = B − yhT. (13)

Therefore Q has a zero eigenvalue and the eigenvalues of Q̃ = B − yhT. The
significance of Q̃may be seen in the formulation of the problem without explicitly using
the free site concentration cs . The free site concentration cs may be removed by writing
it in terms of the other concentrations using the relationship f Tc = 1 or cs = 1 − hTc̃
where c = [c̃T

, cs]T, e.g., cs = c3 = 1− c1 − c2 for the above example. The differential
equation for cs is a linear combination of the others, dcs/dt = −hTdc̃/dt , and may be
omitted. Thus we reduce the number of variables and differential equations by one, and
the problem is then formulated in the conventional Langmuir kinetics form in which the
site concentration is not a variable. This formulation no longer has the mass action form,
but it is clear from the linear nature of these transformations that its eigenvalues are the
same as the non-zero eigenvalues of Q. The Jacobian matrix of the reduced problem is
−Q̃ as given in equation (13). The zero eigenvalue of Q results from the existence of
the conservation condition and the extraneous differential equation, and is therefore not
relevant in considering the stability of the system.

From here on, we specialize to the case of three species (s = 3, two adsorbed
species and free sites). In this case, there are only a few possibilities for the signs of
eigenvalues of Q. Since Q is a product of N and G, its rank cannot exceed that of N .
There may be one or two conservation conditions, corresponding to rank(N) = 1 or 2,
respectively. Furthermore, the positive diagonal elements ofQmean that its rank cannot
be zero, and its eigenvalues must have a positive sum. Therefore possible eigenvalue



J.D. Campbell et al. / Stability of surface mechanisms with three species 287

Figure 1. Possible sign patterns for elementary matrices Aj . Combinations of these sum to give Q.

patterns are {0, 0,+} when det(Q̃) = 0, {0,+,−} when det(Q̃) < 0, and {0,+,+} or
{0, x + iy, x − iy}, x > 0 when det(Q̃) > 0.

The {0, 0,+} pattern arises from rank(Q) = 1, but might also arise if rank(Q) = 2
and det(Q̃) = 0. In this second case, one of the zero eigenvalues does not arise from
a conservation condition (does not have an eigenvector), Q is not diagonalizable, and
determination of the stability requires examination of the nonlinearities in the differential
equations. We consider this possibility separately for each of the classes of mechanisms
considered in sections 2.1–2.3 below. Clearly, determining the sign of det(Q̃) is the key
to assigning the types of eigenvalues. This quantity can be calculated from equation (13),
or as the sum of the principal 2× 2 minors of Q.

We now classify the possible types of mechanisms and determine the nature of
the eigenvalues. In doing so, we will make frequent use of the sign patterns of the
six possible types of elementary matrices, as summarized in figure 1. Here, and else-
where where the exact stoichiometric composition of the species is not important, we
will refer to the species as A, B and C. To see that these are the only six possibil-
ities, note that a reaction without any reactants or a reaction without any products
cannot be compatible with the conservation assumption A6. Therefore there must be
at least one reactant species and at least one product species. We will call a reac-
tion with one species as reactant and another species as product a “type 1 reaction”.
There are three possibilities for this, depending on whether the species not appear-
ing is species A (type 1a), species B (type 1b) or species C (type 1c). Since the two



288 J.D. Campbell et al. / Stability of surface mechanisms with three species

Figure 2. Generalized knot graphs for mechanisms considered. Mechanisms obtained by cyclic permutation
of A, B, C and a, b, c are implied. The ellipse around A and B indicates that these species are together on
the same side of the reaction. Thin lines indicate proportional reactions; thick lines indicate any number of

(non-proportionate) reactions.

species are on opposite sides of the reaction, their stoichiometric coefficients have op-
posite signs and the elementary matrix has two negative off-diagonal entries and two
positive diagonal entries as in the figure. (The sign pattern is independent of the di-
rection the reaction is written, or the values of the stoichiometric coefficients.) The
next possibility is for two of the species to be on one side and the third species to
be on the other side, giving the three “type 2 reactions”. Since no species can ap-
pear on both sides (assumption A5) and there are only three species, this exhausts the
possibilities.

Figure 2 shows graphs for the classes of mechanisms considered, similar to the
knot graphs of Beretta et al. [6] but generalized to allow more than one reaction per
graph edge. Circles or ellipses are the “knots” and contain species present on the same
side of a reaction. The lines represent the reactions and link reactant species to product
species. When lines terminate on the circles or ellipses, all species within are part of
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Table 1
Summary of possible eigenvalues for selected mechanisms. Reaction types as in figure 1; p indicates
proportionate, otherwise no restriction on number or proportionality of steps; Commas separate alternative
mechanisms. Mechanisms obtained by cyclic permutation of a, b and c are implied. Superscripts refer to

example numbers in table 2.

Stable Unstable

Mechanism {0,+,+} {0, x + iy, x − iy}, x > 0 {0, 0,+} {0,−,+}
p2c no no always no
1a+ 1c always no no no
1a+ 1b + 1c yes yes3 no no
2c, 1a+ 1b+ 2c, 1a+ 2c yes no yes1,5,7 yes2,6,8

Simple LH (eq. (14) with m = n = 1) always no no no
p2c + 1c yes ∗ no no

∗y = 0 is found (table 2, example 9), but we do not have an example for y �= 0.

the reaction, but when the lines terminate inside, then only the species at the end of the
line is part of the reaction. Thin lines indicate a single reaction or several proportionate
reactions and thick lines indicate one or more non-proportionate reactions; the reaction
types are labelled according to the notation of figure 1.

Table 1 summarizes the nature of the eigenvalues for the various cases.

2.1. Proportionate reactions only (rank(N) = 1)

If all reactions have proportionate stoichiometries, i.e., the columns of N are all
multiples of each other, then rank(N) = 1. Then from Q = NG, Q �= 0, it must be
that rank(Q) = 1, and since Q has positive trace, it has two zero eigenvalues and one
positive eigenvalue. The two left null vectors of N are also left null vectors ofQ, and so
the system of three differential equations may be reduced down to a single differential
equation, whose steady states are always stable.

A mechanism with only one of the type 1 reactions in figure 1 has only two species,
violates assumption A1, and leads to a zero diagonal element for Q. Therefore the
proportionate reactions must be of type 2a, 2b, or 2c, and Q must have one of the three
sign patterns shown in the bottom half of figure 1. The two linearly-independent left
null vectors can both be chosen with positive integer entries: Suppose, without loss
of generality, that the proportionate reactions are of type 2c (figure 2(A)), and that the
columns of N are multiples of [p, q,−t]T with p, q, t positive integers. Then [t, 0, p]T
is a left null vector which is linearly independent of the positive left null vector f that
exists by assumption. Therefore we may take f and f + [t, 0, p]T as two positive left
null vectors. The interpretation of the second positive null vector in chemical terms as a
conservation condition may be unclear, e.g., for MA +MB→ 2M, the left null vector
[1, 1, 1]T represents conservation of the M atoms, but the interpretation of the left null
vector [3, 1, 2]T is problematic.

The proof in the appendix shows that this case of proportionate reactions is the
only case that gives rank(Q) = 1, i.e., all other mechanisms have rank(Q) = 2. Conse-
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quently, for all other mechanisms, there can only be one left null vector and one conser-
vation condition.

2.2. Only one species on each side of a reaction – type 1 reactions only

This case includes any mixtures of type 1 reactions. The elementary matrices have
non-positive off-diagonal entries (the Z sign pattern), positive diagonal entries and are
symmetric in signs, i.e., have transposed corresponding off-diagonal entries of the same
sign, and Q has the same sign pattern. Q has a positive left null vector and the Z sign
pattern, is a singular M-matrix [9, theorem 5.11, p. 124], and has eigenvalues with non-
negative real parts. Zero is a simple eigenvalue if and only if Q is irreducible. Having
established the stability or semistability of Q, we investigate whether the eigenvalues
must be real. There are two subcases, depending on whether the mechanism contains all
three types 1a, 1b, and 1c, or only two of these.

2.2.1. One species per side, two reaction types
Without loss of generality we take the two types to be 1a and 1c (figure 2(B)),

leading to a single possible sign pattern for Q:
0 0 0

0 + −
0 − +


+


+ − 0
− + 0
0 0 0


 =


+ − 0
− + −
0 − +


 .

1a 1c Q

(14)

This is a real tridiagonal matrix with the product of corresponding off-diagonal entries
positive, for which the eigenvalues are known to be real and simple [10, 3.7.1, p. 166].
The {0, 0,+} case cannot occur here, because zero would not be a simple eigenvalue.
From section 2.2 above, we know that Q is stable with rank 2, so it must have a zero
eigenvalue and two distinct positive eigenvalues.

The real eigenvalues follow from the tree structure of the graph (figure 2(B)) for
a tridiagonal matrix, and the argument is similar to that of Beretta et al. [6]. However,
the argument has been generalized to any number of reactions linking two species, pro-
portionate or not. Furthermore, it is clear that to have the sign structure of equation (14)
all reactions need not be reversible, only each link (edge of the graph) needs a forward
and reverse reaction, e.g., the mechanism MA → MB, 2MB → 2MA, MB → M,
2M→ 2MB would suffice even though all reactions are irreversible.

2.2.2. One species per side, three reaction types
Here we have stable mechanisms with types 1a, 1b and 1c all present (figure 2(C)).

The eigenvalues do not have to be real. The SQ mechanism (equation (5)) falls in this
category (see equation (8)) and has complex eigenvalues with the rate parameters given
in table 2, example 3. This is a counterexample to Solimano and Beretta’s assertion that
a single cycle with at least one surface (or enzyme) species alone on a reaction side leads
to real eigenvalues when the rest of the knot graph is a tree [7]. This same mechanism
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at equilibrium has two positive eigenvalues and one zero eigenvalue, so that {0,+,+}
and {0, x + iy, x − iy} with x > 0 can both arise for these classes of mechanisms. Fur-
thermore, unlike the case above, equal positive eigenvalues are possible, i.e., {0, a, a},
a > 0, table 2, example 4. The eigenvalues cannot be {0, 0,+}, i.e., det(Q̃) �= 0. This
follows from the irreducibility of Q in this case (see beginning of section 2.2).

2.3. Mechanisms with type 2 reactions

So far all reaction classes considered have been stable, but we will find unstable
examples among the mechanisms with type 2 reactions. The case of proportionate reac-
tions of a single type (2a, 2b or 2c) has been dealt with above (section 2.1), and leads
always to {0, 0,+}. Nonproportionate reactions of single type, say type 2c, are next in
complexity, and already in this case unstable behavior is possible, table 2, example 2.
However, adding 1a and/or type 1b to type 2c reactions does not change the sign pattern,
and so we deal with these cases together.

2.3.1. Sign-compatible type 1 and type 2 reactions
Without loss of generality, we assume reactions of type 2c alone, with 1a or with 1a

and 1b (figures 2(D)–(F)). These mechanisms are those in which the surface site is alone
and present in all reactions. Q has sign pattern 2c, B is positive, y is negative and h is
positive, so Q̃ = B − yhT is positive. Since the off-diagonal elements of Q̃ have the
same sign, the eigenvalues must be real. Furthermore, since Q̃ is positive, the Perron–
Frobenius theorem implies that the largest eigenvalue is positive. The possibilities are
{0,+,+} with unequal positive eigenvalues or {0,−,+}. Examples of the latter are
found, i.e., unstable examples with det(Q̃) < 0. As noted, even non-proportionate 2c
reactions alone show this behavior, so one might seek stable behavior amongst mixed
mechanisms in which the 2c reactions are proportionate. However, unstable cases are
found for cases with proportionate 2c plus 1a or plus 1a and 1b, table 2, examples 6
and 8. A continuity argument suggests it is also possible to have det(Q̃) = 0, i.e.,
{0, 0,+} as a transition case between {0,−,+} and {0,+,+}, and this proves to be the
case, table 2, examples 5 and 7.

2.3.1.1. Langmuir–Hinshelwood mechanisms
Instability is possible in general for sign-compatible mixed type 1/type 2 mecha-

nisms. We now investigate the stability of an important subcase, the classical Langmuir–
Hinshelwood (LH) mechanism:

mM
k1

�
k−1

MmA,

nM
k2

�
k−2

MnB,

MmA+MnB
k3

�
k−3

(m+ n)M.

(15)
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Here molecules A and B adsorb on the surface and then react with each other to give
an external product (releasing the reaction sites). An analysis based on sign patterns is
insufficient in this case. Explicit evaluation of det(Q̃) is aided by developing a new form
of Q. Writing vf = v + vb where vb = [v1b, v2b, v3b]T in each elementary matrix and
then collecting the back reaction parts of the elementary matrices separately from the
parts with vj shows that QC can be written as

QC = NV bN
T +NVNT−, (16)

where C = diag(c), V b = diag(vb), V = diag(v), and NT− is NT with its positive
elements set to zero. For the LH mechanism at steady state v1 = v2 = v3, and the
problem may be scaled so that the net rate is unity, v = [1, 1, 1]T. Substituting values
for this example gives:

QC =



a b −am− bn
b d −dn− bm

−am− bn −dn− bm am2 + 2bmn+ dn2




+



1 1 −m
1 1 −n

−m− n −m− n m2 + n2


 , (17)

where a = v1b + v3b > 0, b = v3b > 0, d = v2b + v3b > 0 and the last row and column
of the first term may be deduced from its leading 2 × 2 submatrix using the fact that
f = [m,n, 1]T is the left and right null vector of this term. Explicitly evaluating the
principal 2× 2 minors gives∣∣QC[1, 2]∣∣= (δ + γ ),∣∣QC[2, 3]∣∣= (δ + γ + b + 1)m2 − (1+ d)mn, (18)∣∣QC[1, 3]∣∣= (δ + γ + b + 1)n2 − (1+ a)mn,
where δ = ad − b2 > 0 and γ = a+ d − 2b. The arithmetic geometric mean inequality
and δ > 0 imply 1

2 (a + d) � (ad)1/2 > b so that γ > 0. Therefore |QC[1, 2]| > 0
regardless of the values of m and n.

The “simple LH” mechanism has m = n = 1, as frequently assumed in textbooks,
e.g., [11]. In this case, |QC[2, 3]| = δ + γ + b − d = δ + a − b = δ + v1b > 0,
and |QC[1, 3]| is similarly positive. The sum of the principal 2 × 2 minors for Q =
(QC)C−1 is

∣∣Q̃∣∣= |QC[1, 2]|
c1c2

+ |QC[2, 3]|
c2c3

+ |QC[1, 3]|
c1c3

= c3|QC[1, 2]| + c1|QC[2, 3]| + c2|QC[1, 3]|
c1c2c3

(19)



J.D. Campbell et al. / Stability of surface mechanisms with three species 293

and this is positive since all the concentrations and QC minors are positive. The simple
LH mechanism therefore has eigenvalues {0,+,+} and is always stable. (The above
shows that this is true also for any case with m = n.)

In the more general case of arbitrary m and n, instability may arise. To see this,
note that |QC[2, 3]| (equation (18)) may be made negative by choosing n sufficiently
large, and similarly |QC[1, 3]| may be made negative by choosing m sufficiently large.
However, they cannot both be negative at the same time since their sum is positive:∣∣QC[2, 3]∣∣ + ∣∣QC[1, 3]∣∣ = δ(m2 + n2)+ (γ + b + 1)(m− n)2 + γmn. (20)

An unstable example can be constructed by taking n large enough to make
|QC[2, 3]| negative. This can occur for n as low as 2 for an appropriate choice of
rate constants, table 2, example 6.

2.3.2. Sign incompatible type 1 and type 2 cases
Since many of our arguments have relied on sign patterns, it is interesting that a

case where the sign pattern is not known a priori can nonetheless lead only to stable
behavior. This is the case of proportionate 2c reactions plus 1c reactions (figure 2(G)).
Addition of enough 1c reaction to 2c to give the leading 2 × 2 submatrix negative off-
diagonal elements gives the sign pattern of section 2.2.2, which is always stable. If
this sign pattern does not result, then we consider the signs of the principal 2 × 2 mi-
nors to decide the stability. The proportionate 2c rank 1 matrix Q has all its 2 × 2
minors zero. If addition of the 1c reaction leads to only one negative off-diagonal el-
ement in the leading 2 × 2 submatrix, then that minor is explicitly positive. If both
off-diagonal elements are positive, then they are less than without the 1c reaction, while
the diagonal elements are greater, so that the determinant is greater, making it positive.
The 1, 3 and 2, 3 principal minors are positive because the 1c reactions increase diago-
nal elements of these minors without altering the off-diagonal elements. Therefore all
principal minors are positive, and only stable behavior is possible. Degenerate positive
roots are possible (table 2, example 9), but we have not found an example with complex
roots.

Other cases involve at least two types of type 2 reactions, e.g., 2c+2b, have minors
of indefinite sign, and can show all types of behavior, including instability.

2.4. Reactions at equilibrium

Reactions at equilibrium may be dealt with in a way that crosses the boundaries of
the above classification scheme, and the nature of the eigenvalues is further constrained.
(By equilibrium we mean the special case of steady state in which the forward and re-
verse rates are equal for all reactions; in the literature equilibrium is sometimes used
instead as a synonym for steady state.) At equilibrium all the elementary matrices times
C become symmetric and therefore positive semidefinite. Their sum, QC, is therefore
positive semidefinite, and congruent to C−1/2QCC−1/2 = C−1/2QC1/2, which is simi-
lar to Q. Therefore the eigenvalues are real and non-negative, a well-known result [12].
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There are some circumstances under which one or more reactions must be at equilib-
rium under all conditions, no matter what the rate constant values are, e.g., any two-step
mechanism must be at equilibrium, since the number of reactions (columns of N ) can-
not exceed the rank of N , the nullity of N is zero, and the only solution to Nv = 0 is
v = 0.

There are cases in which one step has a net rate of zero, but the others do not. Even
though one step is not participating, and is in some sense at equilibrium, it can allow
the mechanism to become unstable. For example, two proportionate 2c reactions are
stable, but adding a type 1a reaction with zero net rate can lead to an unstable steady
state (table 2, example 8).

3. Discussion and conclusions

The above analysis shows that there are some categories of mechanisms for which
the nature of the eigenvalues (aside from the zero one coming from the conservation
condition) may be deduced without regard to the values of the rate constants or the sto-
ichiometric coefficients (see also table 1), namely, proportionate reactions (stable and
real, section 2.1), two-step mechanisms (stable and real, section 2.4), mechanisms with
a single species in all reaction sides, i.e., type 1 (stable, sections 2.2, 2.2.2), type 1 with
two species that do not interconvert in any reaction (stable and real, section 2.2.1), mech-
anisms in which one species is alone in all reactions (real, section 2.3.1), and p2c + 1c
mechanisms (stable, section 2.3.2). As may be expected from a continuity argument,
mechanisms that can have a complex conjugate pair may have degenerate non-zero
eigenvalues as a special case, and mechanisms that can be unstable may also be stable
with a (second) zero eigenvalue (without a corresponding eigenvector).

The sequential (equation (5)) and simple Langmuir–Hinshelwood (equation (15),
m = n = 1) mechanisms are the most common surface mechanisms, and are always
stable. McCafferty [13] has given a number of electrochemical mechanisms that pro-
ceed by the simple LH mechanism, and analyzed its irreversible variant, concluding that
it may be unstable (at a steady state in which c1 or c2 is zero). That result does not con-
tradict the present conclusions, since we consider only reversible reactions and exclude
zero concentrations. In gas phase and dilute-solution kinetics, third- and higher-order
reactions are often rejected because concerted collision of three or more molecules is
considered unlikely. However, in surface chemistry the coverages may be of order unity,
and such reactions are more probable. In the LH mechanism, the last step is usually
considered to be bimolecular, but for m or n > 2 the forward reactions of steps 1 and 2
are of higher order. This arises because the probability of finding m free sites together
for adsorption of the large molecule A goes as cm3 , and not because a collision of m
molecules is invoked.

Although the possibility of unstable steady states arises in the mechanisms here,
this does not imply exotic behavior in the non-linear dynamics. The reduced system has
only two differential equations (with Jacobian −Q̃), and Q̃ can only have eigenvalues
{+,+}, {+,−}, {+, 0} or {x ± iy, x > 0}. Instability can only arise by one eigenvalue
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crossing through zero, not by a complex conjugate pair crossing the imaginary axis.
Therefore Hopf bifurcation to a periodic solution is not possible. Instability is always
manifested by a saddle point, and the solution flows away from this point to a stable
steady state without showing exotic behavior.

Because these types of unstable steady states have only a transient existence on
the way to a stable steady state, they have no implications for EIS, in which a stable
steady state is attained before being perturbed. The more critical issue for EIS is to find
conditions under which the stable steady state(s) have complex eigenvalues, a sufficient
condition for an inductive equivalent circuit.

The issue of whether the eigenvalues are real or complex has been investigated
less than the issue of stability. Early it was shown from a thermodynamic point of view
that perturbations relax to equilibrium exponentially and therefore the eigenvalues at
equilibrium are real [14,15]. First-order mechanisms with detailed balance were also
shown to have real eigenvalues [12,16–18]. Hearon extended this result to show that
the equilibrium eigenvalues for arbitrary mechanisms were real [12]. There are only a
few general cases (without restrictions on the rate constants) where the eigenvalues are
known to be real. Tree graphs of various kinds were shown to have real eigenvalues for
different classes of mechanism [12,18–20], culminating in the knot graph approach [6].
Knot graphs, in which the vertices (knots) are collections of species that appear together
on the same sides of reactions and the edges are reactions, were shown to have real
eigenvalues if they are trees, i.e., they have no cycles. (The mechanisms in section 2.2.1
have real eigenvalues for this reason.)

In the case of surface (and enzyme) mechanisms, the conservation of the surface
atoms (enzyme) typically leads to cycles in the graphs. For example, most surface mech-
anisms begin with adsorption of reactants onto previously free reaction sites, and end
with release of these reaction sites, leading to a cycles such as in figures 2(C), (E),
(F), (G). Solimano and Beretta suggested that the eigenvalues would still be real if re-
moval of one cycle in which one surface/enzyme species appeared alone in one vertex
left a tree graph [7]. The SQ mechanism provides a counterexample to this assertion,
since there is one cycle containing M alone at one vertex (figure 2), and complex eigen-
values are found, table 2, example 3. Many stability results have been obtained through
the use of Lyapunov functions, which give no information about whether the eigenvalues
are real or not. For example, complex eigenvalues can occur for deficiency zero mecha-
nisms, as the SQ mechanism shows. Our case of mechanisms with one species alone in
all reactions is one of the few cases where the eigenvalues are real without the restriction
to a tree graph.

It appears that a classification scheme for four (or more) species will be substan-
tially more complicated, but it is worth considering whether a generalization of mech-
anisms with sign-compatible type 1 and type 2 reactions can be found that always has
real eigenvalues. Unfortunately this is not the case: the 3 × 3 matrix B for the mech-
anism 2A + B � 3D, B + C � 2D, D � A, D � B is positive definite and totally
non-negative, yet Q still has complex eigenvalues for some values of the rate constants
(table 2, example 10).
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The results for mechanisms with only type 1 reactions can, however, be generalized
for more than three species. In the more general case a type 1 reaction may be defined
as one in which the reactants consist of a single species and the products consist of a
single but different species. Regardless of the number of species, the positive conserva-
tion vector means that Q is a singular M matrix, which is stable or semistable; purely
imaginary eigenvalues cannot occur. In the case thatQ is irreducible (always true for the
three-species cases above), zero is a simple eigenvalue associated with the conservation
condition and so the linearized problem is stable. The assumption of reversible reactions
leads to matrices that are symmetric in signs. Then it is clear that Q is reducible if and
only if it can be permuted to a direct sum of irreducible diagonal blocks, of order two or
greater (order one is incompatible with a positive conservation vector). The irreducible
blocks correspond to subsystems of differential equations, each with their own positive
conservation condition and uncoupled from the other subsystems. All zero eigenvalues
are associated with a conservation condition, and the linearized problem is therefore
always stable.

The non-linear dynamical behavior for these systems can be deduced from the
theory of monotone dynamical systems [21,22]. They obey the Kamke condition [22,
p. 32] and are cooperative, which in chemical terms means that the rate of production of
a species cannot be decreased by increasing the concentration of any of the other species.
No attractive, nonconstant periodic orbits are possible. Since the system is irreducible
for t > 0, then almost all solutions approach the set of stable steady states [21]. A steady
state cannot have any species concentration zero, given that all reactions are assumed to
be reversible.

Subclasses of type 1 mechanisms have been dealt with previously in the litera-
ture. Networks of unimolecular reactions (without reactions to or from the zero com-
plex) are stable [12,18]. This is because the conservation vector f = [1, 1, . . . , 1]T
applies to such mechanisms. These systems are also referred to as closed compartmen-
tal systems [23]. A closed generalized compartmental system is one in which each
species appears in exactly one complex, and each complex has only one species [23,24].
Thus 2A � 3B � C � A is unacceptable because A appears in two complexes
(2A and A), but 2A � 3B � C � 2A is acceptable. These mechanisms are also
stable, again because a conservation vector may be constructed for them. The vec-
tor [p/µ1, p/µ2, . . . , p/µs]T is suitable, where µi is the stoichiometric coefficient for
species i in its complex, and p is the least common multiple of the µi , e.g., [3, 2, 6]T
for the example just given. These results are more usually approached through defi-
ciency theory, since both compartmental and generalized compartmental systems have
deficiency zero [24].

Our result relaxes the requirement that a species appears only in one complex, but
requires that a positive conservation vector exists. The construction of a conservation
vector from a mechanism written with generic species is non-obvious, but if the chemical
identity of the species is specified, a conservation vector is more easily found. In the
present work, the surface atoms M guarantee a conservation condition. In other cases,
conservation may also be obvious. For example, any mechanism in which all species
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contain benzene rings will be conservative if reactions neither create nor destroy such
rings, and a vector of the numbers of benzene rings in each species is a conservation
vector. A three-species example is A � B, 2B � 2C, 2C � 2A, which is neither a
generalized compartmental system nor does it have deficiency zero, but it is stable from
our results, since it is composed only of type 1 reactions (1a+ 1b+ 1c).

The requirement for reversible reactions may be relaxed provided that Q remains
symmetric in signs. A weaker acceptable requirement is “species reversibility”, i.e., a
reaction taking B to A exists whenever a reaction taking A to B exists, e.g., 2A → 2B
may be partnered with B→ A.
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Appendix. Proof that rank(N) = rank(Q)

We show in lemma A.2 below that rank(Q) = 1 implies rank(N) = 1. The rule for
the rank of a product applied toQ = NG gives rank(Q) � rank(N). Also rank(N) � 2,
since N is 3× r with at least one left null vector. So rank(Q) = 2 implies rank(N) = 2.
Therefore in all cases rank(N) = rank(Q).

Lemma A.1. A mix of type 2c reactions has det(B) = 0 if the reactions are proportion-
ate and det(B) > 0 otherwise.

Proof. If a type 2c elementary matrix is postmultiplied by C, then the leading 2 × 2
submatrix of the product can be written as vj fñj ñ

T
j or vjbñj ñ

T
j where ñj is nj without

its last entry, because each entry involves the same rate (vj f or vjb). The sum of these
positive semidefinite submatrices is the product BC̃:

BC̃ =
r∑
j=1

vj fbñj ñ
T
j = ÑV fbÑ

T = ÑV 1/2
fb

(
ÑV

1/2
fb

)T
,

where the subscript fb denotes f or b as appropriate, V fb = diag(v1fb, v2fb, . . . , vrfb),

and Ñ is the first two rows of N . Let A = ÑV
1/2
fb , and recall that V fb and C̃ are

nonsingular. Then rank(B) = rank(BC̃) = rank(AAT) = rank(A) = rank(Ñ) =
rank(N), where the last equality applies since the positive left null vector f of N
means that the last row of N is a linear combination of the first two rows. So if
the reactions are proportionate (rank(N) = 1), then rank(B) = 1, B is singular and
det(B) = 0. But if rank(N) = 2, then BC̃ is non-singular positive definite and
det(B) = det(BC̃)/ det(C̃) = det(BC̃)/c1c2 > 0. �
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Lemma A.2. rank(Q) = 1 implies rank(N) = 1.

Proof. We show that the only mechanisms with rank(Q) = 1 are those with propor-
tionate reactions of one of the types 2a, 2b, or 2c, which have rank(N) = 1. Suppose
rank(Q) = 1. Then no column (or row) can have a zero entry, otherwise a diagonal en-
try would be zero. For Q to have a positive left null vector, each column must have two
positive entries and a negative entry or two negative entries and a positive entry. Each
column must be a multiple of the others, and these conditions only lead to positive diag-
onal entries of Q if Q has one of the three sign patterns of the bottom half of figure 1.
Without loss of generality, we permute species so that the leading 2×2 submatrix B has
positive entries, i.e., Q has a sign pattern looking like 2c in figure 1. For Q to have this
sign pattern, at least one of the component elementary matrices in the sum must be of
type 2c, since the others have negative or zero 1, 2 and 2, 1 entries. The others may be
present in the sum so long as their 1, 2 and 2, 1 entries are small enough that the posi-
tive 1, 2 and 2, 1 entries in the type 2c reactions dominate and make these entries in the
sum positive. Addition of a 2 × 2 leading submatrix with non-negative diagonal entries
and non-positive off-diagonal entries (for reactions not of type 2c) to a positive 2 × 2
submatrix (for the type 2c reactions) increases the diagonal entries and decreases the
off-diagonal entries (since they remain positive), so that the determinant must increase.
The only way for the determinant to be zero, as required for rank(Q) = 1 is for there
to be only type 2c reactions and furthermore that these 2c reactions are proportionate
(from lemma A.1). We conclude that rank(Q) = 1 can only occur for mechanisms
with proportionate reactions of one of the types 2a, 2b or 2c, i.e., rank(Q) = 1 implies
rank(N) = 1. �
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